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Abstract: To achieve desired level of reliability in limit state design is generally not an easy task. Especially 

when probabilistic analysis including detailed description of uncertainties is utilized. In general, engineering 

design belongs to the category of inverse problems with the aim to determine selected design parameters. In the 

paper two alternative approaches are employed for finding design parameters of a single-span post-tensioned 

composite bridge. The first approach is based on utilization of artificial neural network in combination with 

small-sample simulation technique and genetic algorithms. The second approach considers inverse problem as 

reliability-based optimization task using small-sample double-loop method. 
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1. Introduction 
When performing either reliability 

assessment or advanced engineering design, it is 
certainly essential to take uncertainties into 
account using a probabilistic analysis. 
Reliability assessment requires forward 
reliability methods for estimating the reliability 
(usually theoretical failure probability and/or 
reliability index are determined). On the other 
hand, the engineering design requires an inverse 
reliability approach to determine the design 
parameters to achieve desired target reliabilities. 

In this paper two inverse reliability 
approaches are utilized. The first one is based on 
artificial neural network (ANN) in combination 
with small-sample simulation technique Latin 
hypercube sampling (LHS) and genetic 
algorithms (GA). General methodology of this 
inverse reliability analysis method was proposed 
by Lehký and Novák (2012).  

The second method is double-loop reliability 
based optimization (RBO) approach. It aims at 
designing the system in a robust way by 
minimizing objective function under reliability 
constraints. It provides the means for 
determining the optimal solution of a certain 
objective function, while ensuring a predefined 

small probability of structural failure. Thus RBO 
method have to mix optimization algorithm 
together with reliability calculation. The 
approach known as “double-loop” consists in 
nesting the computation of the failure 
probability with respect to the current design 
within the optimization loop, see e.g. Dubourg et 
al. (2010). 

2. Design parameters determination 

2.1 Problem formulation 
The aim of classical (forward) reliability 
analysis is the estimation of unreliability using a 
probability measure called the theoretical failure 
probability, defined as: 

 0 P  Zp f               (1) 

where Z = g(X) is a function of basic random 
variables X = X1, X2, …, XN called safety 
margin. The failure probability is calculated as a 
probabilistic integral: 

 

fD

f fp XXX d               (2) 

where the domain of integration of the joint 
probability distribution function (PDF) above is 
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limited to the failure domain Df where g(X) ≤ 0. 
The function g(X), a computational model, is a 
function of random vector X (and also of other, 
deterministic quantities). Random vector X 
follows a joint PDF fX(X) and, in general, its 
marginal random variables can be statistically 
correlated. 

The design of structure or its part to achieve 
the required reliability and durability is a typical 
example of the inverse problem. The aim is to 
find input design parameters (deterministic or 
associated with random variables) d  X which 
yield to the corresponding structural safety 
described by probability measures – failure 
probability pf or reliability index β related to 
different limit states, 

 βpd f ,1 f               (3) 

Analytical solution of the inverse problem is 
usually possible only when using deterministic 
analysis and even just in simple cases. In other 
cases, often a trial-and-error procedure is carried 
out when an estimation of design parameters is 
performed (mostly based on empirical 
relationships and/or recommendations) and then 
the reliability of the system is assessed. Once we 
come to fully probabilistic analysis of structure 
an analytical solution or utilization of 
trial-and-error procedure is time-consuming and 
inefficient, or even impossible. Here, it seems 
necessary to use some advanced methods as it is 
described in the following sections.  

2.2 Soft computing approach 
The soft computing approach is based on the 
coupling of a small-sample stochastic simulation 
of Monte Carlo type and an ANN. Since finding 
analytical formulation of inverse function f -1 in 
(3) is possible only in extremely simple cases an 
ANN based surrogate model is utilized instead. 
Then the inverse problem (3) takes the form: 

 βpd f ,-1
ANNf               (4) 

where f -1
ANN is an ANN approximation of the 

original inverse function. 
ANN must be trained to solve the particular 

problem. Since the feed-forward type network is 
employed a “supervised” learning is used to 
adjust network parameters, i.e. a set of pairs (di, 
j) or (di, pf,i), di  d, j  , pf,i  pf is 

introduced to the network with the aim to find a 
function 1

ANN
f : d →  or 1

ANN
f : d → pf in the 

allowed class of functions that matches the 
examples. Here, LHS is used for the efficient 
preparation of training set. ANN training is an 
optimization task solved by GA in combination 
with gradient descent method. Once the ANN 
has been trained, it represents an approximation 
consequently utilized in the following way: To 
provide the best possible set of design 
parameters corresponding to prescribed 
reliability. It is done by introducing desired 
reliability measures to ANN as an input signal 
which is distributed through ANN structure to 
its output where optimal design parameters are 
obtained. For more detailed description of 
identification procedure see Lehký and Novák 
(2012). 

2.3 Stochastic optimization approach 
Another possibility how to find design 
parameters is to treat such inverse task as 
optimization problem, which is formulated as: 

 

   udlXd

d

d







   ,0,

:subject to

min

find

0f pgp

f
    (4) 

with pf the probability of constraint satisfaction. 
The limit state g = 0 separates the region of 
failure (g ≤ 0) and safe region (g > 0) and is a 
function of the design variables d (and l and u 
are lower and upper bounds) and the uncertain 
variables X, p0 is the reliability level or 
performance requirement. The above inequality 
can be expressed by a failure probability 
multidimensional integral with the joint 
probability density function of probabilistic 
variables X. Formulation based on reliability 
index instead of failure probability can be used. 

The so called double-loop RBO approach 
has been chosen for identification of design 
parameters of analysed bridge in section 3. This 
approach splits calculations in two loops: 

A) The outer loop represents the 
optimization part of the process. The simulation 
within the design space is performed in this 
cycle. For obtained design vectors of 
n-dimensional space di(d1, d2, …, dn) objective 
function values are calculated. The best 
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realization is then selected based on these 
values. Consequently the best realization of 
random vector di,best is compared with 
optimization constraints. These constraints are 
formulated as allowed interval of reliability 
index for selected limit state function. 
Calculations of reliability index for every 
randomly generated vector di takes place in the 
inner loop. Objective function itself has a 
functional value in the form of reliability index. 

B) The inner loop is used to calculate 
reliability index (in presented example Cornell´s 
index) either for the need of checking of 
generated solutions, if they satisfy constraints, or 
to calculate the actual value of the objective 
function.   

3. Post-tensioned Composite Bridge 

3.1 Bridge description and computational 

model 
A single-span post-tensioned composite bridge, 
crossing a single-track railway on the main road, 
is situated near the village Uherský Ostroh in the 
Czech Republic. The bridge was constructed in 
1957. Based on the diagnostic survey from 
2007, the bridge is made of twelve precast 
post-tensioned concrete MPD3 (outer) and 
MPD4 (intermediate) type girders, which were 
used from 1955 for construction of slab bridges 
up to a clear span of 18 m. Each of MPD girders 
was composed of six segments that are 
connected to each other by the transverse joints. 
See the bridge composition in Figures 1 and 2. 

A computational model of the bridge was 
created in ATENA software (Červenka et al. 
2012). For concrete a “3D NonLinear 
Cementitious 2” material model was used. 
Prestressing tendons and shear reinforcement 
were modelled as discrete and smeared 
reinforcement, respectively, by means of 
bilinear stress-strain diagram with hardening. 
The following load cases were modelled: dead 
load of the structure, longitudinal prestressing, 
secondary dead load and traffic load for the 
assessment of normal load-bearing capacity. 
Loading scheme related to normal loading class 
consists of a three-axle vehicle in every traffic 
line and a continuous load over the bridge width. 
For details see ČSN 73 6222 (2009). A 
computational model of the bridge, including the 
loading scheme described above is depicted in 

Figure 3. For an explanation a load caused by 
the front axle of the three-axle vehicle is 
replaced by the equivalent value of continuous 
load in particular traffic line. 

 

Figure 1. A side view of analyzed bridge 

 

 

Figure 2. Longitudinal and transversal sections of 

analyzed bridge 

 

 

Figure 3. A computational model of the bridge, 

including the traffic load related to normal loading 

class 
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3.2 Stochastic model 
For stochastic modeling, material properties of 
concrete and prestressing tendons were 
randomized. Stochastic parameters of random 
input variables were defined using FReET 
software (Novák et al. 2013) according to 
recommendations of JCSS (2013) and 
TP 224 (2010) and these were updated based on 
the material parameters testing according to 
diagnostic survey. Definitions of random input 
variables are summarized in Table 1. Alongside 
concrete material parameters, the dead load of 
the structure and the weight of road layers were 
randomized, see the concrete mass density and 
secondary dead load, respectively, in Table 1.  

Table 1. Definition of input random variables of the 

model 

Variable PDF Mean CoV 

Concrete of segments: 

Elastic modulus Ec,s [GPa] LN 37.20 0.10 

Tensile strength ft,s [MPa] WBM 3.301 0.15 

Compressive strength 

fc,s [MPa] 
LN 43.35 0.08 

Fracture energy Gf,s [N/m] WBM 82.51 0.15 

Mass density ρs [kN/m3] N 23.80 0.04 

Concrete of transverse joints: 

Elastic modulus Ec,j [GPa] LN 26.81 0.15 

Tensile strength ft,j [MPa] WBM 1.913 0.35 

Compressive strength 

fc,j [MPa] 
Tri 19.13 0.23 

Fracture energy Gf,j [N/m] WBM 47.82 0.25 

Mass density ρj [kN/m3] N 23.80 0.04 

Prestressing tendons: 

Elastic modulus Ep [GPa] N 190.0 0.03 

Yield strength fy,p [MPa] N 1248 0.03 

Ultimate strength fu,p [MPa] N 1716 0.03 

Prestress force P1 [MN] N 14.20 0.09 

Prestress force P2 [MN] N 10.05 0.09 

Prestress force P3, P4 [MN] N 3.449 0.09 

Other: 

Secondary dead load 

g1 [kN/m] 
N 65.55 0.05 

Traffic load Vn [t] Det 25 - 

Note: Det – deterministic, N – Normal, LN – 

Lognormal, WBM – Weibull minimum, Tri – 

Triangular 

 

Values of prestress forces were defined by 
their mean values with respect to short-term as 
well as long-term losses of initial prestress. 
Considering their substantial effect on global 
level of load-bearing capacity at the 
serviceability limit states, applied stochastic 
model was also defined fully in agreement with 
JCSS recommendations. Finally, traffic load was 
defined as deterministic. 

The statistical correlation between material 
parameters of concrete of segments and 
transverse joints and prestressing tendons was 
also considered and imposed using a simulated 
annealing approach (Vořechovský and Novák 
2009). Correlation matrices (see Fig. 4) were 
defined with respect to formerly performed tests 
and recommendations of JCSS. 

 

Figure 4. Correlation matrices of material parameters 

 

3.3 Design parameters 
According to diagnostic survey, the average 
value of concrete compressive strength of joints 
was 40.5 MPa but it was classified only as 
C6/7.5 strength class due to high variability in 
measurements probably caused by bridge spatial 
deterioration. This also brings uncertainty into 
the actual losses of prestress. Its value was 
roughly estimated according to code 
specifications as 17 % which correspond to the 
value of prestress force P1 = 14.20 MN, 
including actual losses of prestress. Since the 
tensile strength of transverse joints and the 
bridge prestress has a significant effect on the 
bridge load-bearing capacity, mean values of 
both were considered as uncertain design 
parameters with the aim to find their critical 
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values corresponding to desired reliability level 
and load-bearing capacity. Two limit states were 
taken into account – serviceability limit state of 
decompression (SLSD) and serviceability limit 
state of crack initiation (SLSC). The both limit 
states have implicit form – structural resistance 
is calculated using the nonlinear FE model, load 
action is considered as a deterministic variable 
placed according to the normal loading class 
scheme. Target reliability indices were 
considered as β1 = 0 for SLSD, and β2 = 1.3 for 
SLSC, respectively. According to diagnostic 
survey and needs of bridge administrator desired 
load-bearing capacity related to normal loading 
class was considered as 25 t. 

Reliability analysis was carried out using 
LHS simulation method. Due to high 
computational demands of nonlinear model 32 
simulations were used and Cornell’s reliability 
indices for both limit states were calculated. 

3.4 Determination using stochastic 

optimization approach 
First, reliability based optimization approach 
was performed. Since SLSD is predominantly 
affected by level of bridge prestress, 
identification of its mean value for this limit 
state was performed first. Then, using known 
value of mean(P1) also the second design 
parameter – mean value of tensile strength 
mean(ft) – was taken into account and identified.     
Optimized design parameters along with 
corresponding reliability indices are presented in 
Table 2. Evolution of reliability indices during 
optimization is depicted in Figure 5. 

 

Figure 5. Evolution of reliability indices during 

optimization 

 

Table 2. Resulting values of design parameters and 

corresponding reliability indices obtained by 

stochastic optimization approach 

Design 

parameter 
Value 

1 

(1,target) 

2 

(2,target) 

mean(P1) [%] 15.094 0.0638 

(0) 

1.3034 

(1.3) mean(ft) [MPa] 2.88 

 

3.5 Determination using soft computing 

approach 
As an alternative to stochastic optimization 
method, the soft computing approach was 
employed. The ANN (see Fig. 6) consisted of 
one hidden layer having five nonlinear neurons 
(hyperbolic tangent transfer function) and an 
output layer having two output neurons (linear 
transfer function) which correspond to two 
design parameters – mean(P1) and mean(ft). The 
ANN has two inputs which correspond to two 
specified reliability indices, 1 and 2. The same 
set of random design parameter samples, 
generated using LHS method and corresponding 
reliability indices obtained from reliability 
analyses, which were prepared for stochastic 
optimization approach, were utilized here as the 
training set for ANN. 

 

Figure 6. A schematic view of utilized ANN 

 

Table 3. Resulting values of design parameters and 

corresponding reliability indices obtained by 

soft-computing approach 

Design 

parameter 
Value 

1 

(1,target) 

2 

(2,target) 

mean(P1) [%] 15.077 0.0734 

(0) 

1.2767 

(1.3) mean(ft) [MPa] 3.04 
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The resulting design parameter values are 
summarized in Table 3. To validate results a 
stochastic analysis was carried out including 
determined design parameters and reliability 
indices were calculated; see the comparison with 
the target reliability indices in Table 3. 

Results of both approaches show that the 
required mean values of concrete tensile strength 
in transverse joints correspond to compressive 
strength 37.7 MPa and 40.3 MPa respectively 
(calculated from tensile strength according to 
recommendations in fib Model Code 2010). 
These are smaller than original findings of 
diagnostic survey where the mean value of 
compressive strength was 40.5 MPa. Let’s note 
that requirement for safety index β2 = 1.3 in case 
of SLSC is relatively strict. For lower values of 
safety index, an even lower demand for concrete 
strength would be obtained.  

Resulting requests to values of prestress 
forces are slightly stricter compared to those 
estimated according to code specifications 
where losses of prestress were considered as 
17 % for infinite lifetime (9 % are immediate 
losses, coefficient of variation is 0.09). 
Identified mean value of prestress force 
indicates current loss of prestress equal to 12 %. 
From results we can conclude that requirement 
for normal load-bearing capacity Vn = 25 t is 
adequate for SLSC. In case of SLSD a more 
detailed investigation of losses of prestress and 
their variability would be necessary to confirm 
required load-bearing capacity for given safety. 

4. Conclusions 
Two efficient approaches for identification of 
selected design parameters of post-tensioned 
composite bridge were employed to ensure 
desired level of safety. Both approaches has led 
to more or less the same results with comparable 
computational demands. The most 
time-consuming part of identification is 
calculation of reliability when nonlinear FEM 
analyses are carried out. Both approaches are 
general and can be easily used for almost any 
inverse reliability problem. Results of inverse 
reliability analysis of post-tensioned composite 
bridge confirmed that bridge load-bearing 
capacity 25 tons related to normal loading class 
could be a realistic demand for required safety. 
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